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A B S T R A C T

This research into environmentally-friendly ionic liquids (ILs) used a series of choline amino acid ILs ([Ch][AA]
ILs) prepared from choline cations and several amino acid anions. Their physicochemical and tribological
properties were tested, and the results showed that [Ch][AA] ILs had good lubricating properties for different
friction pairs at room temperature (RT). Their toxicities were checked against three aquatic organisms: brine
shrimp, zebrafish and green algae. The results showed that they have a remarkably low toxicity. Versus traditional
IL 1-butyl-3-methyl imidazolium tetrafluoroborate (L-B104), the [Ch][AA] ILs had comparable or even better
physicochemical and tribological properties. More importantly, they had the environmentally features of
biodegradability and non-toxicity.
1. Introduction

Ionic liquids (ILs) are substances consisting of anions and cations that
are liquid below 100 �C [1]. ILs have wide electrochemical windows, low
volatility, good conductivity, no combustion, and other properties, and
are widely used in electrochemistry, separation and purification and
organic synthesis reactions [2,3]. ILs were first used as synthetic lubri-
cants in 2001 [4]. Since then, various halogen-containing ILs have been
prepared and investigated as fungible lubricants of fossil one. While they
are beneficial only to reduce the air pollution, but it cannot reduce water
pollution, especially water-soluble ILs.

Halogen-containing ILs are easily hydrolyzed in water to deliver
highly toxic and corrosive hydrogen fluoride that restricts broad appli-
cations of these ILs [5–12]. Moreover, their impacts on aquatic organisms
and ecosystems are unknown [13], and this has aroused people's concern
about their toxicity to aquatic organisms [14–16] and corrosion to
equipment. Thus, it is essential to determine the impacts of ILs on aquatic
ecosystems. This will further reduce atmospheric pollution and avoid
human diseases caused by pollution [17]. Recently, halogen-free ILs have
attracted attention from chemists due to their biodegradability,
non-toxicity, and environmentally benign features. Importantly, the
physicochemical properties and tribological performance features of
these ILs as lubricants are comparable to conventional ILs, and can be
anuary 2018; Accepted 28 January 2
even better [5,18].
Choline is an essential nutrient for the synthesis of cell membranes

and is a component of lecithin. It is widely found in animals and plants
and is biodegradable [19–22]. Amino acids are raw materials for the
synthesis of proteins. They not only have low toxicity and good biode-
gradability but are also good lubricants [23–26]. In this work, choline
was used as a cationic donor, and eight amino acids (glycine, alanine,
leucine, methionine, histidine, proline, phenylalanine and tryptophan)
were used as anionic donors to synthesize IL lubricants ([Ch][AA] ILs).
The tribology performance and aquatic ecological toxicity tests of these
ILs show that [Ch][AA] ILs are high performance and environmentally
friendly lubricants.

2. Experimental

2.1. Chemicals and materials

The IL 1-butyl-3-methyl imidazolium tetrafluoroborate (L-B104) was
from Lanzhou Institute of Chemical Physics. The raw materials for the
preparation of [Ch][AA] ILs were used without further purification:
choline hydroxide (ChOH, 45% in water), glycine (Gly, 99%), alanine
(Ala, 99%), histidine (His, 98%), proline (Pro, 99%), phenylalanine (Phe,
99%) and tryptophan (Trp, 99%). These were purchased from J&K
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Chemicals (Beijing, China); leucine (Leu, 99%) and methionine (Met,
99%) were from Aladdin Chemicals (Shanghai, China).

2.2. The preparation and characterization of [Ch][AA] ILs

The [Ch][AA] ILs were synthesized through an economical and
feasible method. A typical process is shown in the Supplementary In-
formation. The 1H NMR and 13C NMR spectra of the [Ch][AA] ILs were
acquired on an Agilent 400MHz nuclear magnetic resonance spectrom-
eter (NMR), using D2O as the solvent and the appropriate signal for re-
sidual solvent protons as the reference. The Fourier transform infrared
(FT-IR) spectra of the [Ch][AA] ILs were recorded on a Nicolet-10 Fourier
transform infrared (FT-IR) instrument. The high-resolution mass spectra
(HRMS) used a Bruker Dalton micrOTOF-Q II instrument (Billerica, MA).
The thermal stabilities of the samples were measured on a Netzsch syn-
chronous thermal analyzer system (DSC/DTA-TG, STA 449F3) under
nitrogen atmosphere with a flow rate of 50mL/min. The temperature
increased from RT to 600 �C, and the heating rate is 10 �C/min. The
hydrolysis stability of the samples were tested according to our previous
work [27–31]. Each sample was mixed with equal molar amounts of
water, and then stirred at RT. The pH was measured to indicate hydro-
lysis stability after 30min, 1 h, 2 h until 48 h. All the ILs were miscible
with water, and the mixed solutions were used to measure the pH value
changes. The viscosities of the [Ch][AA] ILs were studied at 40 �C and
100 �C, respectively, using a SYP1003-Ⅲ kinematic viscosity tester. Vis-
cosity indexes were calculated to evaluate the viscosity temperature
characteristics of the samples. The molecular structures, names and codes
of [Ch][AA] ILs and IL L-B104 are shown in Table 1.

2.3. Corrosion test

An electrochemical workstation (CHI660E B15086) was adopted to
qualitative analysis of the corrosion of [Ch][AA] ILs. In this experiment,
the three-electrode cell was made up of a saturated calomel electrode (as
the reference electrode), a platinum foil of 1 cm2 (as the counter elec-
trode) and a steel rod with a geometric area of 0.5 cm2 (as the working
Table 1
The chemical structures and codes of the used samples.

Samples (code) Chemical structure

1-Butyl-3-methylimidazolium tetrafluoroborate (L-
B104)

Choline Glycine
([Ch][Gly])

Choline Alanine
([Ch][Ala])

Choline Leucine
([Ch][Leu])

Choline Methionine
([Ch][Met])

Choline Histidine
([Ch][His])

Choline Proline
([Ch][Pro])

Choline Phenylalanine
([Ch][Phe])

Choline Tryptophan
([Ch][Trp])

436
electrode). The surfaces were polished with emery paper (grade
400–800–1200–1500) and then rinsed with distilled water and acetone.
For polarization measurements, the corresponding open-circuit potential
is�200mV, the scan rate is 0.3mV s�1 and the temperature is 25 �C. The
electrochemical impedance spectroscopy (EIS) measurements were per-
formed from 104 Hz to 10�2 Hz using a sinusoidal AC perturbation with
an amplitude of 5mV. Before the test, the electrode was immersed in
ethanol at OCP (open circuit potential) until a steady state was obtained.
Polarization curves and Nyquist plots were measured to obtain the
electrochemical parameters and to evaluate the corrosion of the ILs. At
the same time, a copper strip corrosion test was also used to judge the
corrosion of [Ch][AA] ILs and the detailed process is presented in the
Supplementary Information.

2.4. Friction and wear test

The tribological properties of [Ch][AA] ILs and L-B104 were studied
on an Optimol SRV-V oscillating reciprocating friction and wear tester.
The tests were performed on three friction pairs at RT. The specification
of the upper AISI 52100 bearing steel ball and the materials, specifica-
tions, and processing methods of the lower stationary disks are the same
as the former [27,28,31]. In this test, the specific test conditions are
100 N, 25 Hz, 1mm, and 30min. The relative humidity of the test envi-
ronment is about 35–45%. After the test, the wear volumes were
measured by a non-contact surface mapping profiler (BRUKER-NPFLEX).
Each set of data were repeated three times, and the averaged values were
reported. The worn surfaces were analyzed with a PHI 5000 VersaProbe
III X-ray photoelectron spectroscopy (XPS, PHI-CHINA Limited Com-
pany). During the test, monochromated Al Kα (1486.6 eV) was used as
X-ray source; the X-ray beam surveyed 100 μm, (25W, 15 kV). The
photoelectron take-off angle is 45�, and the binding energy of C1s
(C-C/C-H: 284.80 eV) was used to calibrate the peak position.

2.5. Toxicity test

In the research of environmentally-friendly ILs, toxicity is one of the
most important evaluation criteria for green lubricants. Here, brine
shrimp, zebrafish and green algae were used to evaluate the toxicity of
[Ch][AA] ILs.

Brine shrimp purchased from Advanced Science and Technology
Companies in the United States to evaluate the ecotoxicity of [Ch][AA]
ILs. These shrimp are invertebrate organisms that inhabit estuarine
ecosystems. They are widely employed in laboratory bioassays for toxi-
cological applications through the estimation of the medium lethal
concentration (LC50). Artificial salty water (larvae medium) was ob-
tained by dissolving 10 g marine salt in 1 L of distilled water and the pH
of the solution was adjusted to 7.0–8.0 using NaHCO3 to prevent pH
changes during incubation (lethal to brine shrimp). Then it was divided
into two parts. One part (A) was used for aquaculture shrimp: Shrimp
eggs were added to the solution and incubated for 48 h at 28 �C under
aerobic conditions. The other part (B) was prepared to configure different
concentration gradients of the IL lubricants solution. Here, 100 μL of A
containing 15–20 brine shrimp and 100 μL B were added to 96-well
plates. Each concentration was done in three parallel runs. After 24 h of
exposure, the live larvae were counted with microscope and, the LC50
value (Table 3) was calculated [32].

Zebrafish are one of the most widely model species used in the life
sciences, because of their small size, low cost breeding and water quality
tolerance. This study followed procedure 203 of the OECD (1992).
Zebrafish were purchased from Eze-Rinka Biological Science and Tech-
nology Limited Company. Before the toxicity test, the fish were accli-
mated in the laboratory environment for at least 7 days with 12:12 h
light/dark at 26� 1 �C to confirm normal growth condition and the
mortality rate of zebrafish was zero. Prior to the formal experiment,
preliminary experiments were performed to screen the death rate (10%–

90%). The ILs were configured with different concentration gradients,



Table 2
Viscosities and viscosity indexes of the samples.

Samples Kinematic viscosity (mm2/s) Viscosity
index

40 �C 100 �C

L-B104 42.97 7.12 126.60
[Ch][Gly] 229.82 20.08 100.63
[Ch][Ala] 204.26 18.58 100.86
[Ch][Leu] 190.42 17.82 101.75
[Ch][Met] 420.10 28.75 95.56
[Ch][His] 1652.48 54.32 69.72
[Ch][Pro] 202.91 16.67 84.73
[Ch][Phe] 756.30 32.16 58.42
[Ch][Trp] 32539.51 288.24 72.85

Fig. 2. Polarization curves of EIS for iron in the ILs solution.
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and the solutions were added to glass beakers. Each beaker held 10 fish
and 1.5 L solution. This confirmed that the solution has enough dissolved
oxygen. The fish behavior was observed carefully, if there was no
noticeable physical movement, then fish were considered dead and
removed immediately. The number of dead fish was carefully recorded.
The fish were not fed during the test to prevent fecal interference. After
96 h, the entire toxicity test was ended, and the median lethal concen-
tration LC50 was calculated [33,34].

Green algae were purchased from Institute of Hydrobiology, Chinese
Academy of Sciences. The toxicity test was conducted according to the
GB/T 21805–2008 procedure. The green algae were propagated in an
Erlenmeyer flask in GB11 medium with an initial concentration of
approximately 5*104/mL. The flask was kept in the laboratory and illu-
minated with white fluorescent light; the light intensity is
30� 5 lEm�2 s�1. This intensity kept the algal cells growing under
normal conditions at 25� 5 �C and was used for testing in the logarith-
mic phase.

The samples were placed in different concentration gradients. Green
algae was then added, and the algal concentration was measured using
the OD650 values (the absorbance when wavelength is 650 nm). The half
concentration effect (EC50) was calculated to evaluate the toxicity. The
most common toxicity test for algae is the growth inhibition test with a
cultured species [35]. Each sample had 3 replications.

3. Results and discussions

3.1. Structure characterization and stability analysis

The structure and purity of [Ch][AA] ILs were confirmed with 1H
NMR, 13C NMR, FT-IR and HRMS spectroscopic data. Detailed data are
presented in the Supplementary Information.

ILs are often used as lubricants and should have good thermal stability
and hydrolytic stability. The thermogravimetric (TG) and pH change
curves of L-B104 and [Ch][AA] ILs are shown in Fig. 1. Fig. 1a shows that
almost no weight change appeared before 150 �C for all tested samples.
When the temperature increased to nearly 160 �C, the [Ch][AA] ILs
started gradually decomposed; the [Ch][Gly], [Ch][Ala], [Ch][Leu], and
[Ch][Pro] decomposed completely at about 290 �C. But [Ch][AA] ILs
have a secondary decomposition stage because the structure reorganizes
at higher temperature conditions [36,37]. Fig. 1b shows that the pH of
L-B104 changed significantly over the first two hours. Versus L-B104,
almost no pH change appeared in the solution of [Ch][AA] ILs during this
test. Therefore, [Ch][AA] ILs are not easy to hydrolyze and can to be used
as efficient green lubricants.

3.2. Viscosity

Table 2 shows the viscosities and viscosity indexes of the samples. The
viscosity index was used to evaluate the viscosity-temperature properties
of the samples. The viscosities of [Ch][AA] ILs, especially [Ch][His] and
[Ch][Trp], are greater than L-B104 both at 40 �C and 100 �C. It is obvious
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that the introduction of N-containing heterocycles to [Ch][AA] ILs results
in a significant increase in their viscosities [38]. Versus L-B104, the [Ch]
[AA] ILs have moderate viscosity indexes, and it can be summed up that
their viscosities decrease and viscosity indexes increase with increasing
alkyl chain length for the anionic part [39]. The viscosity-temperature
property of [Ch][AA] ILs can be significantly improved upon the intro-
duction of sulfur to the anionic part. In contrary, the viscosity is signifi-
cantly reduced by the introduction of aromatic ring [40].

3.3. Corrosion test

Fig. 2 shows the polarization curves of [Ch][AA] ILs and L-B104. The
potentials of [Ch][AA] ILs are more negative than L-B104 (Fig. 2) indi-
cating that the [Ch][AA] ILs have a more predominant cathode inhibition
activity [41]. Of these, the potential of [Ch][Trp] is larger than the others
because indole caused the corrosion potential to move in a larger
Fig. 1. TG (a) and the pH change curves (b) of L-
B104 and [Ch][AA] ILs.



Fig. 3. The friction coefficient (a) evolves over
time and wear volume losses (b) of sliding steel
disks for samples.

Fig. 4. The friction coefficient (a) evolves over
time and wear volume losses (b) of sliding cop-
per disks for samples.
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direction. This means that the dissolution reaction of the anode is
stronger than the cathodic oxidation/reduction reaction. This is consis-
tent with previous research [42]. Other consistent electrochemical pa-
rameters, including corrosion potential (Ecorr), corrosion current density
(Icorr), anodic Tafel slope (βa), and cathode Tafel slope (βc) were obtained.
These are seen in Supplementary Information (Table S1). All of these
results indicate that the [Ch][AA] ILs are less corrosive than L-B104. This
is consistent with the results of the copper strip corrosion shown in
Supplementary Information (Fig. S1).

3.4. Friction and wear test and mechanism analysis

The tribological properties of [Ch][AA] ILs were studied on three
types of friction pairs including steel/steel, steel/copper, and steel/
aluminum; L-B104 was used as the reference sample. Figs. 3–5 show the
friction coefficients and wear volume losses for the sliding discs. Fig. 3a
shows that the friction coefficients of [Ch][AA] ILs are close to L-B104 on
the steel/steel friction pairs at RT; only the friction coefficient curve of
[Ch][Leu] is slightly higher than that of L-B104. The corresponding wear
volume losses for the sliding discs are showed in Fig. 3b. The wear vol-
ume of L-B104 is larger than those of the [Ch][AA] ILs, especially
compared with [Ch][Phe]. Indeed, the newly synthesized [Ch][AA] ILs
have better anti-wear properties than L-B104.
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Under the same conditions, [Ch][AA] ILs were applied on copper and
aluminum friction pairs (Figs. 4 and 5). On copper friction pairs, the [Ch]
[AA] ILs were more prominent than L-B104 regardless of the friction
coefficients or wear volumes (Fig. 4). On aluminum friction pairs (Fig. 5),
the running-in times of [Ch][Ala] and [Ch][Phe] were similar to L-B104
but were longer than other [Ch][AA] ILs. All of the [Ch][AA] ILs have
good friction reducing and anti-wear properties compared with L-B104.
The wear volume is very small—especially for [Ch][Leu]. This is because
a longer alkyl chain can prevent direct metal contact [24]. At the same
time, the additional CH3 group can enhance the anti-wear behavior [43].
Thus, we concluded that the IL L-B104 is not suitable to be used as a
lubricant for lightweight materials such as copper and aluminum [24].

These results confirm that [Ch][AA] ILs are feasible as lubricants. XPS
tests were conducted on the worn surfaces to further analyze the lubri-
cating mechanism. Fig. 6 shows the XPS spectra of the worn copper
surfaces lubricated by the [Ch][AA] ILs at RT and others are shown in the
Supplementary Information. Fig. 6 shows the position and abundance of
Cu2p, O1s and N1s peaks on the copper surfaces. These are almost the
same before and after friction. Although the more obvious S2p were
detected, the corresponding friction coefficient and wear volume of [Ch]
[Met] were not found in the smallest samples. Thus, the chemical reac-
tion of the sulfur element has no effective lubrication effect during the
sliding process.
Fig. 5. The friction coefficient (a) evolves over
time and wear volume losses (b) of sliding
aluminum disks for samples.



Fig. 6. XPS spectra of the worn copper surfaces lubricated by the [Ch][AA] ILs at RT.
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It is well known that carboxylic acids can be easily adsorbed onto
rubbed metallic surfaces to reduce friction and wear [44]. This means
that the good tribological properties of [Ch][AA] ILs are mostly due to
the physical adsorption films formed on the metal surfaces during the
sliding process. These can be removed by ultrasonic rinsing before XPS
testing [45,46]. During the rubbing process, low-energy electrons are
emitted from the contact convex points on the rubbedmetal surfaces. The
carboxyl groups were firstly adsorbed onto the surfaces and then coated
with cationic ions, preventing metal–metal contact and further reducing
friction and wear [46,47]. The mechanism analysis of steel/steel and
aluminum/steel friction pairs was similar, and the XPS spectrum were
presented in the Supplementary Information (Figs. S2 and S3).
Table 3
The LC50 and EC50 values for three kinds of aquatic organisms after exposure to L-B104 and
[Ch][AA] ILs.

Samples brine shrimp zebrafish green algae

LC50 mg/L HR LC50 mg/L HR EC50 mg/L HR

L-B104 115.95 þþ 85.44 þþþ 34.15 þþþ
[Ch][Gly] 15952.10 þ 226.33 þþ 5766.63 þ
[Ch][Ala] 9968.91 þ 179.57 þþ 2474.40 þ
[Ch][Leu] 9156.29 þ 160.86 þþ 1011.56 þ
[Ch][Met] 6515.87 þ 155.16 þþ 1031.31 þ
[Ch][His] 19213.91 þ 274.46 þþ 9997.21 þ
[Ch][Pro] 11186.72 þ 184.76 þþ 4343.72 þ
[Ch][Phe] 15720.64 þ 203.52 þþ 3952.16 þ
[Ch][Trp] 15383.49 þ 194.27 þþ 3723.89 þ
3.5. Toxicity test

Ecotoxicity study on ILs towards organisms is the most important
environmentally benign features of a new developed product [48–55].
Brine shrimp [32,56] and zebrafish are widely used by the Organization
for Economic Cooperation and Development (OECD) as biological in-
dicators to test the toxic effects of chemicals [33,57–59]. Algae is sen-
sitive to a wide range of contaminants and has been recommended in
regulatory testing [35,60]. All three aquatic organisms were adopted
here to show a detailed toxicity evaluation of [Ch][AA] ILs. The toxicities
of [Ch][AA] ILs towards brine shrimp, zebrafish and green algae were
assessed, and the test results are shown in Table 3.

The data presented in Table 3 show that the [Ch][AA] ILs were less
toxic to brine shrimp than L-B104. In the eight kinds of [Ch][AA] ILs, the
LC50 values decreased along with increasing alkyl chain length. The
lipophilicity of the ILs enhanced with longer alkyl chains. This can in-
crease membrane permeability and the cell damage, thereby causing the
death of organism [55]. In those [Ch][AA] ILs, [Ch][Met] were more
toxic than others, but its toxicity is still lower than L-B104. The LC50 of
[Ch][Met] is 6515.87mg/L, while that of L-B104 is 115.95mg/L. Versus
[Ch][Ala], the toxicities of [Ch][AA] ILs ([Ch][His], [Ch][Pro], [Ch]
[Phe] and [Ch][Trp]) were markedly lower than others; all of these
contain nitrogen heterocycles or benzene rings. The [Ch][His] in
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particular has an imidazole ring. Here, the lipophilicity of the IL is
decreased and its toxicity is significantly reduced.

Hazard ranking (HR) was used to evaluate the toxicity of the ILs:
0.1–1 mg/L, highly toxic (þþþþþ); 1–10 mg/L, slightly toxic (þþþþ);
10–100 mg/L, moderately toxic (þþþ); 100–1000 mg/L, practically
harmless (þþ); greater than 1000 mg/L, relatively harmless (þ).

Table 3 shows that the toxicity evaluation results obtained on
zebrafish are consistent with the brine shrimp. The L-B104 has the
highest toxicity due to the presence of imidazolium [61], and its LC50 was
approximately twice as much as [Ch][AA] ILs. The toxicity in green algae
was quantified using EC50 values. The L-B104 has much higher toxicity
than the [Ch][AA] ILs. It is also noteworthy that longer alkyl chains
obviously inhibit the growth of green algae. This result was consistent
with previous findings [62–66].

In conclusion, no matter what kind of aquatic organisms were adopt,
the effect of the studied ILs are similar: Toxicity increased with longer IL
alkyl-chain length. The toxicity can be significantly reduced by intro-
ducing nitrogen heterocycles or benzene rings. The LC50 and EC50 of [Ch]
[AA] ILs are significantly higher than L-B104, which mean the toxicities
of [Ch][AA] ILs are obviously lower than that of L-B104. Therefore, [Ch]
[AA] ILs are practically nontoxic and it is due to the eco-friendly nature of
both the choline cation and the amino acid anion [53]. All the LC50 or
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EC50 values of [Ch][AA] ILs are greater than 100mg/L or greater than
1000mg/L. This makes them “practically harmless” or “relatively
harmless” according to the Acute Toxicity Rating Scale by Fish and
Wildlife Service (FWS).

4. Conclusions

In this work, eight [Ch][AA] ILs were synthesized. The ILs have good
tribological properties on steel/steel, copper/steel, and aluminum/steel
friction pairs at RT. Concurrently, the toxicity of these compounds was
evaluated against three aquatic organisms: brine shrimp, zebrafish and
green algae. These are the most widely used organisms for ecotoxicity
studies. The results show that the toxicities of [Ch][AA] ILs are signifi-
cantly lower than that of L-B104. They can be used as high-performance
and environmentally friendly room temperature IL lubricants.
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